Rapidly changing business environments expose companies to high levels of uncertainty. This uncertainty manifests itself in significant changes that tend to occur over the lifetime of a process and possibly affect its performance. It is important to understand the root causes of such changes since this allows us to react to change or anticipate future changes. Research in process mining has so far only focused on detecting, locating and characterizing significant changes in a process and not on finding root causes of such changes. In this paper, we aim to close this gap. We propose a framework that adds an explainability level onto concept drift detection in process mining and provides insights into the cause-effect relationships behind significant changes. We define different perspectives of a process, detect concept drifts in these perspectives and plug the perspectives into a causality check that determines whether these concept drifts can be causal to each other. We showcase the effectiveness of our framework by evaluating it on both synthetic and real event data. Our experiments show that our approach unravels cause-effect relationships and provides novel insights into executed processes.
翻译:快速变化的商业环境使公司暴露于高度的不确定性之中。这种不确定性表现在一个过程的一生中往往会发生的重大变化中,并可能影响其绩效。重要的是要理解这种变化的根源,因为这使我们能够对变化作出反应或预测未来的变化。过程采矿的研究迄今为止只侧重于发现、定位和描述一个过程中的重大变化,而不是寻找这种变化的根源。在本文件中,我们的目标是缩小这一差距。我们提议了一个框架,在过程采矿中的概念漂移探测上增加一个解释性水平,并提供关于重大变化背后的因果关系的洞察力。我们界定了一个过程的不同视角,发现这些视角中的概念漂移,并将这些视角插入一个因果关系检查中,以确定这些概念的漂移是否可能是彼此的因果关系。我们通过对合成和真实事件数据进行评估来展示我们框架的有效性。我们的实验表明,我们的方法会破坏过程的因果关系,并对执行过程提供新的洞察力。