We consider the plurality consensus problem among $n$ agents. Initially, each agent has one of $k$ different opinions. Agents choose random interaction partners and revise their state according to a fixed transition function, depending on their own state and the state of the interaction partners. The goal is to reach a consensus configuration in which all agents agree on the same opinion, and if there is initially a sufficiently large bias towards one opinion, that opinion should prevail. We analyze a synchronized variant of the undecided state dynamics defined as follows. The agents act in phases, consisting of a decision and a boosting part. In the decision part, any agent that encounters an agent with a different opinion becomes undecided. In the boosting part, undecided agents adopt the first opinion they encounter. We consider this dynamics in the population model and the gossip model. For the population model, our protocol reaches consensus (w.h.p.) in $O(\log^2 n)$ parallel time, providing the first polylogarithmic result for $k > 2$ (w.h.p.) in this model. Without any assumption on the bias, fast consensus has only been shown for $k = 2$ for the unsynchronized version of the undecided state dynamics [Clementi et al., MFCS'18]. We show that the synchronized variant of the undecided state dynamics reaches consensus (w.h.p.) in time $O(\log^2 n)$, independently of the initial number, bias, or distribution of opinions. In both models, we guarantee that if there is an initial bias of $\Omega(\sqrt{n \log n})$, then (w.h.p.) that opinion wins. A simple extension of our protocol in the gossip model yields a dynamics that does not depend on $n$ or $k$, is anonymous, and has (w.h.p.) runtime $O(\log^2 n)$. This solves an open problem formulated by Becchetti et al.~[Distributed Computing,~2017].
翻译:我们考虑的是美元代理商之间的多元共识问题。 最初, 每个代理商都有一个以美元为单位的匿名变量。 代理商根据自己的状态和互动伙伴的状态选择随机互动伙伴并根据固定的过渡功能修改其状态。 目标是达成一个共识配置, 所有代理商都同意相同的意见, 如果最初对一种意见存在足够大的偏向, 意见应该占上风。 我们分析一个未决定的状态动态的同步变量, 定义如下。 代理商的作用是分阶段的, 包括一个决定和提振部分。 在决定部分, 任何遇到不同观点的代理商都会变得不独立。 在提振部分, 未决定的代理商会采纳他们第一次遇到的意见。 我们认为, 在人口模型中, 我们的协议模式( w. h. p.) 在 $( log% 2 n) 的平行时间上达成了共识。 以美元( w. hr. p. ) 代码的第一次多点结果, 以美元为美元为单位的 。 在模型中, 以任何时间假设, 快速的共识 只能显示 美元的版本 。