Temporal (or time-evolving) networks are commonly used to model complex systems and the evolution of their components throughout time. Although these networks can be analyzed by different means, visual analytics stands out as an effective way for a pre-analysis before doing quantitative/statistical analyses to identify patterns, anomalies, and other behaviors in the data, thus leading to new insights and better decision-making. However, the large number of nodes, edges, and/or timestamps in many real-world networks may lead to polluted layouts that make the analysis inefficient or even infeasible. In this paper, we propose LargeNetVis, a web-based visual analytics system designed to assist in analyzing small and large temporal networks. It successfully achieves this goal by leveraging three taxonomies focused on network communities to guide the visual exploration process. The system is composed of four interactive visual components: the first (Taxonomy Matrix) presents a summary of the network characteristics, the second (Global View) gives an overview of the network evolution, the third (a node-link diagram) enables community- and node-level structural analysis, and the fourth (a Temporal Activity Map -- TAM) shows the community- and node-level activity under a temporal perspective.
翻译:虽然这些网络可以通过不同手段进行分析,但视觉分析是进行定量/统计分析之前进行预分析的有效方法,以便确定数据中的模式、异常和其他行为,从而导致新的洞察力和更好的决策。然而,许多现实世界网络中有大量的节点、边缘和/或时标,可能导致被污染的布局,使得分析效率低下甚至不可行。在本文件中,我们提出了大网Vis,这是一个基于网络的视觉分析系统,旨在协助分析小型和大型时间网络。它成功地实现了这一目标,利用了以网络社区为重点的三个分类来指导视觉探索进程。这个系统由四个互动的视觉部分组成:第一个(天文学矩阵)介绍网络特征的概要,第二个(全球视角)提供网络演变的概览,第三个(节点图表)提供网络演变的概览,第三个基于网络的视觉分析系统旨在协助分析小型和大型时间网络网络。它成功地实现了这一目标,利用了三个侧重于网络社区的分类来指导视觉探索进程。这个系统由四个互动的视觉部分组成:第一个(天文学矩阵)介绍网络特征的特征,第二个(全球视角)提供网络演变的概况,第三个(节点图解图)使得社区和节时空水平结构活动在TAM和第四层次下进行。