Human mobility prediction is a core functionality in many location-based services and applications. However, due to the sparsity of mobility data, it is not an easy task to predict future POIs (place-of-interests) that are going to be visited. In this paper, we propose MobTCast, a Transformer-based context-aware network for mobility prediction. Specifically, we explore the influence of four types of context in the mobility prediction: temporal, semantic, social and geographical contexts. We first design a base mobility feature extractor using the Transformer architecture, which takes both the history POI sequence and the semantic information as input. It handles both the temporal and semantic contexts. Based on the base extractor and the social connections of a user, we employ a self-attention module to model the influence of the social context. Furthermore, unlike existing methods, we introduce a location prediction branch in MobTCast as an auxiliary task to model the geographical context and predict the next location. Intuitively, the geographical distance between the location of the predicted POI and the predicted location from the auxiliary branch should be as close as possible. To reflect this relation, we design a consistency loss to further improve the POI prediction performance. In our experimental results, MobTCast outperforms other state-of-the-art next POI prediction methods. Our approach illustrates the value of including different types of context in next POI prediction.


翻译:人类流动预测是许多基于地点的服务和应用的核心功能。然而,由于流动数据的广度,预测未来将要访问的POI(利益地点)并非一项容易的任务。在本文件中,我们提议采用基于变换器的背景意识网络MobTCast,一个基于变换器的背景意识网络,用于流动预测。具体地说,我们探索流动预测中四种环境类型的影响:时间、语义、社会和地理背景。我们首先使用变换器结构设计一个基移动特征提取器,该结构将历史 POI序列和语义信息作为投入。它处理时间和语义背景环境。根据用户的基础提取器和社会联系,我们使用一个自我注意模块,以模拟社会背景的影响。此外,与现有方法不同,我们在流动预测中引入一个位置预测分支,作为模拟地理背景和预测下一个位置的辅助任务。 直观地,预测 POI的位置和从辅助分支的预测位置之间的地理距离。它处理时间和语义环境背景背景背景环境环境环境环境环境环境环境环境。根据用户的基础提取器和社会联系,我们使用一个自我注意模块模块模块模块模型模型模型模型,以模拟社会环境环境环境影响模型,我们未来预测的下一个预测结果的预测结果将尽可能接近。 。我们的数据分析结果的排序。我们更接近于其他的定位。 。我们更接近于实验性判断结果的定位。我们更接近于实验性判断结果的定位。我们的数据。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
已删除
将门创投
5+阅读 · 2019年4月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
论文浅尝 | Leveraging Knowledge Bases in LSTMs
开放知识图谱
6+阅读 · 2017年12月8日
Arxiv
0+阅读 · 2021年12月8日
VIP会员
相关VIP内容
专知会员服务
15+阅读 · 2021年5月21日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
已删除
将门创投
5+阅读 · 2019年4月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
论文浅尝 | Leveraging Knowledge Bases in LSTMs
开放知识图谱
6+阅读 · 2017年12月8日
Top
微信扫码咨询专知VIP会员