Quantum noise is the key challenge in Noisy Intermediate-Scale Quantum (NISQ) computers. Previous work for mitigating noise has primarily focused on gate-level or pulse-level noise-adaptive compilation. However, limited research efforts have explored a higher level of optimization by making the quantum circuits themselves resilient to noise. We propose QuantumNAS, a comprehensive framework for noise-adaptive co-search of the variational circuit and qubit mapping. Variational quantum circuits are a promising approach for constructing QML and quantum simulation. However, finding the best variational circuit and its optimal parameters is challenging due to the large design space and parameter training cost. We propose to decouple the circuit search and parameter training by introducing a novel SuperCircuit. The SuperCircuit is constructed with multiple layers of pre-defined parameterized gates and trained by iteratively sampling and updating the parameter subsets (SubCircuits) of it. It provides an accurate estimation of SubCircuits performance trained from scratch. Then we perform an evolutionary co-search of SubCircuit and its qubit mapping. The SubCircuit performance is estimated with parameters inherited from SuperCircuit and simulated with real device noise models. Finally, we perform iterative gate pruning and finetuning to remove redundant gates. Extensively evaluated with 12 QML and VQE benchmarks on 10 quantum comput, QuantumNAS significantly outperforms baselines. For QML, QuantumNAS is the first to demonstrate over 95% 2-class, 85% 4-class, and 32% 10-class classification accuracy on real QC. It also achieves the lowest eigenvalue for VQE tasks on H2, H2O, LiH, CH4, BeH2 compared with UCCSD. We also open-source QuantumEngine (https://github.com/mit-han-lab/pytorch-quantum) for fast training of parameterized quantum circuits to facilitate future research.


翻译:Qantum 噪音是Noisy 中级量子计算机(NISQ)的关键挑战。先前的缓解噪音工作主要侧重于门级或脉级噪声适应汇编。然而,有限的研究努力探索了更高的优化水平,使量子电路本身能够适应噪音。我们提议建立量子电路(QantumNAS),一个用于对变异电路和qubt绘图进行噪声调调调调调调的综合框架。挥发量子电路是建造QML和量子模拟的一个很有希望的方法。然而,由于设计空间和参数培训费用巨大,找到最佳变异电路及其最佳参数是具有挑战性的。我们提议通过引入新的超级环球体来取消电路搜索和参数培训。我们用多层预设的参数化门来建造,并经过迭代样取样和升级的参数集集(Tircult)。我们从手头到直径直径直径直径直径直径直径直径直径直径直径直立,然后我们进行进演进的QQQQQQQQQQQQQQQQQQQQQQ的升级测试,最后我们用机机的升级平流分析了10CRLMLSyL4的成绩评估。我们进行10CRBroalalaldroaldroaldroaldroaldal 。我们做的成绩评估了10 。我们路路路路路路路路路路路路路路基的进度对10 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
最新《自动微分》综述教程,71页ppt
专知会员服务
21+阅读 · 2020年11月22日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2021年10月1日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
最新《自动微分》综述教程,71页ppt
专知会员服务
21+阅读 · 2020年11月22日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员