Advances in neuroscience and artificial intelligence have enabled preliminary decoding of brain activity. However, despite the progress, the interpretability of neural representations remains limited. A significant challenge arises from the intrinsic properties of electroencephalography (EEG) signals, including high noise levels, spatial diffusion, and pronounced temporal variability. To interpret the neural mechanism underlying thoughts, we propose a transformers-based framework to extract spatial-temporal representations associated with observed visual stimuli from EEG recordings. These features are subsequently incorporated into the attention mechanisms of Latent Diffusion Models (LDMs) to facilitate the reconstruction of visual stimuli from brain activity. The quantitative evaluations on publicly available benchmark datasets demonstrate that the proposed method excels at modeling the semantic structures from EEG signals; achieving up to 6.5% increase in latent space clustering accuracy and 11.8% increase in zero shot generalization across unseen classes while having comparable Inception Score and Fréchet Inception Distance with existing baselines. Our work marks a significant step towards generalizable semantic interpretation of the EEG signals.


翻译:神经科学与人工智能的进步已初步实现脑活动的解码。然而,尽管取得进展,神经表征的可解释性仍然有限。这一挑战主要源于脑电图(EEG)信号的固有特性,包括高噪声水平、空间扩散性以及显著的时间变异性。为解析思维背后的神经机制,我们提出了一种基于Transformer的框架,用于从EEG记录中提取与观测视觉刺激相关的时空表征。这些特征随后被整合到潜在扩散模型(LDMs)的注意力机制中,以促进从脑活动中重建视觉刺激。在公开基准数据集上的定量评估表明,所提方法能出色地从EEG信号中建模语义结构:在潜在空间聚类准确率上最高提升6.5%,在未见类别的零样本泛化能力上提升11.8%,同时其Inception Score与Fréchet Inception Distance指标与现有基线方法相当。我们的工作标志着向EEG信号可泛化语义解释迈出了重要一步。

0
下载
关闭预览

相关内容

【CVPR2024】VideoMAC: 视频掩码自编码器与卷积神经网络
专知会员服务
17+阅读 · 2024年3月4日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
40+阅读 · 2022年2月28日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员