In this demo paper, we present ConSTR, a novel Contextual Search Term Recommender that utilises the user's interaction context for search term recommendation and literature retrieval. ConSTR integrates a two-layered recommendation interface: the first layer suggests terms with respect to a user's current search term, and the second layer suggests terms based on the users' previous search activities (interaction context). For the demonstration, ConSTR is built on the arXiv, an academic repository consisting of 1.8 million documents.
翻译:在本演示文件中,我们介绍了Constre,这是一个新的背景搜索术语建议,它利用用户的交互环境来搜索术语建议和文献检索。Constrech综合了两层建议界面:第一层建议用户当前搜索术语的术语,第二层建议基于用户先前的搜索活动(互动背景)的术语。为了演示,Constrech 建在ArXiv上,这是一个由180万份文件组成的学术储存库。