Performative prediction is a framework that captures distribution shifts that occur during the training of machine learning models due to their deployment. As the trained model is used, data generation causes the model to evolve, leading to deviations from the original data distribution. The impact of such model-induced distribution shifts in federated learning is increasingly likely to transpire in real-life use cases. A recently proposed approach extends performative prediction to federated learning with the resulting model converging to a performative stable point, which may be far from the performative optimal point. Earlier research in centralized settings has shown that the performative optimal point can be achieved under model-induced distribution shifts, but these approaches require the performative risk to be convex and the training data to be noiseless, assumptions often violated in realistic federated learning systems. This paper overcomes all of these shortcomings and proposes Performative Robust Optimal Federated Learning, an algorithm that finds performative optimal points in federated learning from noisy and contaminated data. We present the convergence analysis under the Polyak-Lojasiewicz condition, which applies to non-convex objectives. Extensive experiments on multiple datasets demonstrate the advantage of Robust Optimal Federated Learning over the state-of-the-art.


翻译:性能预测是一个框架,用于捕捉机器学习模型在训练过程中因其部署而引发的分布偏移。随着训练模型的使用,数据生成会导致模型演化,从而偏离原始数据分布。此类模型诱导的分布偏移在联邦学习中的影响,在实际应用场景中愈发可能显现。最近提出的一种方法将性能预测扩展至联邦学习,所得模型收敛至一个性能稳定点,但该点可能远离性能最优点。先前在集中式设置中的研究表明,在模型诱导的分布偏移下可以实现性能最优点,但这些方法要求性能风险为凸函数且训练数据无噪声,这些假设在实际联邦学习系统中常被违反。本文克服了所有这些缺陷,提出了性能鲁棒最优联邦学习算法,该算法能从噪声和污染数据中寻找联邦学习的性能最优点。我们在Polyak-Lojasiewicz条件下给出了收敛性分析,该条件适用于非凸目标函数。在多个数据集上的大量实验证明了鲁棒最优联邦学习相对于现有先进方法的优势。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2023年9月27日
Arxiv
16+阅读 · 2023年6月6日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
24+阅读 · 2021年1月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
14+阅读 · 2023年9月27日
Arxiv
16+阅读 · 2023年6月6日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
24+阅读 · 2021年1月25日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员