How many crimes occurred in the city center? And exactly which part of town is the 'city center'? While location is at the heart of many data questions, geographic location can be difficult to specify in natural language (NL) queries. This is especially true when working with fuzzy cognitive regions or regions that may be defined based on data distributions instead of absolute administrative location (e.g., state, country). GeoSneakPique presents a novel method for using a mapping widget to support the NL query process, allowing users to specify location via direct manipulation with data-driven guidance on spatial distributions to help select the area of interest. Users receive feedback to help them evaluate and refine their spatial selection interactively and can save spatial definitions for re-use in subsequent queries. We conduct a qualitative evaluation of the GeoSneakPique that indicates the usefulness of the interface as well as opportunities for better supporting geospatial workflows in visual analysis tasks employing cognitive regions.


翻译:市中心发生了多少犯罪? 确切地说, 城市的哪个部分是“ 城市中心 ”? 虽然位置是许多数据问题的核心所在, 但地理位置可能很难用自然语言( NL) 查询来说明。 当与根据数据分布而不是绝对行政位置(例如州、州)来界定的模糊的认知区域或区域合作时, 情况尤其如此。 GeoSneakPique 展示了使用绘图部件支持 NL 查询进程的新方法, 让用户能够通过直接操作以数据驱动的空间分布指导来指定位置, 以帮助选择感兴趣的区域。 用户会收到反馈, 帮助他们以互动的方式评估和完善空间选择, 并保存空间定义, 以便在随后的查询中重新使用。 我们对GeoSneakPique 进行了质量评估, 这表明界面的有用性以及利用认知区域更好地支持视觉分析任务中的地理空间工作流程的机会。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2021年12月20日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
5+阅读 · 2018年3月16日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员