Recently authors have introduced the idea of training discrete weights neural networks using a mix between classical simulated annealing and a replica ansatz known from the statistical physics literature. Among other points, they claim their method is able to find robust configurations. In this paper, we analyze this so-called "replicated simulated annealing" algorithm. In particular, we explicit criteria to guarantee its convergence, and study when it successfully samples from configurations. We also perform experiments using synthetic and real data bases.
翻译:最近的一些作者引入了培训离散重力神经网络的想法,使用经典模拟肛门和从统计物理文献中知道的复制反射的混合方法。 他们声称,除其他观点外,他们的方法能够找到稳健的配置。 在本文中,我们分析了这种所谓的“复制模拟反射”算法。 特别是,我们明确了保证其趋同的标准,并研究从配置中成功提取的样本。 我们还利用合成和真实的数据基础进行了实验。