Recently, there has been discussions on the ill-posed nature of super-resolution that multiple possible reconstructions exist for a given low-resolution image. Using normalizing flows, SRflow[23] achieves state-of-the-art perceptual quality by learning the distribution of the output instead of a deterministic output to one estimate. In this paper, we adapt the concepts of SRFlow to improve GAN-based super-resolution by properly implementing the one-to-many property. We modify the generator to estimate a distribution as a mapping from random noise. We improve the content loss that hampers the perceptual training objectives. We also propose additional training techniques to further enhance the perceptual quality of generated images. Using our proposed methods, we were able to improve the performance of ESRGAN[1] in x4 perceptual SR and achieve the state-of-the-art LPIPS score in x16 perceptual extreme SR by applying our methods to RFB-ESRGAN[21].
翻译:最近,人们讨论了超级分辨率的错误性质,即对特定低分辨率图像存在多种可能的重建。使用正常流,SR流[23] 通过学习输出的分布而不是确定性输出达到最先进的感知质量。在本文中,我们调整了SRFlow的概念,以便通过正确实施一对一财产来改进基于GAN的超分辨率。我们修改生成器,以便根据随机噪音来估计一个分布。我们改进了妨碍感知性培训目标的内容损失。我们还提出了进一步提升所生成图像感知质量的额外培训技术。我们用建议的方法,我们得以改进ESRGAN[1]x4感知性斯洛伐克共和国的性能,并通过对RFB-ESRGAN[21]应用我们的方法,在X16感知性极端SR中实现最先进的LPIPS分数。