Finding a computable expression for the feedback capacity of additive channels with colored Gaussian noise is a long standing open problem. In this paper, we solve this problem in the scenario where the channel has multiple inputs and multiple outputs (MIMO) and the noise process is generated as the output of a state-space model (a hidden Markov model). The main result is a computable characterization of the feedback capacity as a finite-dimensional convex optimization problem. Our solution subsumes all previous solutions to the feedback capacity including the auto-regressive moving-average (ARMA) noise process of first order, even if it is a non-stationary process. The capacity problem can be viewed as the problem of maximizing the measurements' entropy rate of a controlled (policy-dependent) state-space subject to a power constraint. We formulate the finite-block version of this problem as a \emph{sequential convex optimization problem}, which in turn leads to a single-letter and computable upper bound. By optimizing over a family of time-invariant policies that correspond to the channel inputs distribution, a tight lower bound is realized. We show that one of the optimization constraints in the capacity characterization boils down to a Riccati equation, revealing an interesting relation between explicit capacity formulae and Riccati equations.
翻译:使用彩色高斯噪音的添加渠道的反馈能力寻找可比较的表达式是一个长期的开放问题。 在本文中, 我们解决了这一问题, 假设频道有多个投入和多个输出( MIMO), 并且噪音过程是作为州空间模型( 隐藏的Markov 模型) 的输出产生的。 主要结果是将反馈能力描述成一个有限维的 convex 优化问题。 我们的解决方案将所有先前的反馈能力解决方案, 包括自动递减移动平均( ARMA) 第一顺序的噪声进程, 即使这是一个非静止的过程。 能力问题可以被视为将控制( 取决于政策的) 州空间的测量率最大化的问题, 受权力制约。 我们将这一问题的定点版设计为 \ emph{ 后继convex 优化问题 。 这反过来又导致一个单字母和可调和的上层约束 。 通过优化一个符合频道投入分配( ARMAA) 时间可变式政策的组合, 显示一个符合频道( 以政策为主的) 优化的( ) 最下方程式的公式, 我们展示了一个最大幅度的 最接近的公式。