We consider a connection-level model proposed by Massouli\'{e} and Roberts for bandwidth sharing among file transfer flows in a communication network. We study weighted proportionally fair sharing policies and establish explicit-form bounds on the weighted sum of the expected numbers of flows on different routes in heavy traffic. The bounds are linear in the number of critically loaded links in the network, and they hold for a class of phase-type file-size distributions; i.e., the bounds are heavy-traffic insensitive to the distributions in this class. Our approach is Lyapunov-drift based, which is different from the widely used diffusion approximation approach. A key technique we develop is to construct a novel inner product in the state space, which then allows us to obtain a multiplicative type of state-space collapse in steady state. Furthermore, this state-space collapse result implies the interchange of limits as a by-product for the diffusion approximation of the equal-weight case under phase-type file-size distributions, demonstrating the heavy-traffic insensitivity of the stationary distribution.
翻译:我们考虑Massouli\'{{e}和Roberts提出的在通信网络中文件传输流之间共享带宽的连接级模型。 我们研究加权比例公平共享政策,并针对不同交通繁忙路线流量预期流量的加权总和制定明确的形式界限。 界限线性线性线性线性线性线性线性线性网络中关键装载的链接数量,它们持有的是一个阶段类型文件大小分布的类别; 即, 界限对于该类分布的分布不敏感。 我们的方法基于Lyapunov-drift, 与广泛使用的传播近似法不同。 我们开发的关键技术是在州空间制造一种新的内部产品, 从而使我们能够在稳定状态下获得一种多复制型的状态空间崩溃。 此外, 这种状态空间崩溃的结果意味着将限制作为副产品进行交换, 以在阶段类型文件规模分布下对等量案例的传播近似, 表明固定分布的高度贸易不敏感。