In swarm intelligence, Particle Swarm Optimization (PSO) and Differential Evolution (DE) have been successfully applied in many optimization tasks, and a large number of variants, where novel algorithm operators or components are implemented, has been introduced to boost the empirical performance. In this paper, we first propose to combine the variants of PSO or DE by modularizing each algorithm and incorporating the variants thereof as different options of the corresponding modules. Then, considering the similarity between the inner workings of PSO and DE, we hybridize the algorithms by creating two populations with variation operators of PSO and DE respectively, and selecting individuals from those two populations. The resulting novel hybridization, called PSODE, encompasses most up-to-date variants from both sides, and more importantly gives rise to an enormous number of unseen swarm algorithms via different instantiations of the modules therein. In detail, we consider 16 different variation operators originating from existing PSO- and DE algorithms, which, combined with 4 different selection operators, allow the hybridization framework to generate 800 novel algorithms. The resulting set of hybrid algorithms, along with the combined 30 PSO- and DE algorithms that can be generated with the considered operators, is tested on the 24 problems from the well-known COCO/BBOB benchmark suite, across multiple function groups and dimensionalities.
翻译:在群温智能中,Pater Swarm优化(PSO)和差异进化(DE)成功地应用于许多优化任务中,并引入了大量变异,在这些变异中,实施了新的算法操作员或组件,以提高经验性绩效。在本文中,我们首先提议将PSO或DE的变异组合起来,将每种算法组合起来,并将其中的变异作为相应的模块的不同选项。然后,考虑到PSO和DE的内在运行方式之间的相似性,我们把算法混合起来,通过分别与PSO和DE的不同操作员建立两个组群,从这两个组中挑选个人。由此产生的新型混合化,称为PSODE,包括双方最最新的变异种,更重要的是通过模块的不同即时速化将PSO或DE的变异种组合起来。我们仔细考虑16个不同的变异运算操作员来自现有的PSO-和DE算法的变异种操作员,加上4个不同的选择操作员,使得混合化框架能够产生800个新的算法,从这两个组中挑选人。由此而形成的混合混合算法的组合,称为PSODEODODO,同时考虑混合算法的组和混合算法组的组合在超过30个已测试的变数组的变数组之间,可以测试的变化算算法和制成为代BBBBB-COB-C-C-COBBBBBB的共制成的变数组的变数组,可以测试。