Reactive transport in saturated/unsaturated porous media is numerically upscaled to the space-time scale of a hypothetical measurement through coarse-grained space-time (CGST) averages. The reactive transport is modeled at the fine-grained Darcy scale by the actual number of molecules involved in reactions which undergo advective and diffusive movements described by global random walk (GRW) simulations. The CGST averages verify identities similar to a local balance equation which allow us to derive expressions for the flow velocity and the intrinsic diffusion coefficient in terms of averaged microscopic quantities. The latter are further used to verify the CGST-GRW numerical approach. The upscaling approach is applied to biodegradation processes in saturated aquifers and variably saturated soils and the CGST averages are compared to classical volume averages. One finds that if the process is characterized by slow variations in time, as in homogeneous reaction systems, the differences between the two averages are negligible. Instead, the differences are significant and can be extremely large in simulations of time-dependent biodegradation processes in both soils and saturated aquifers.


翻译:在饱和/非饱和多孔介质中,通过粗粒度空间时间(CGST)平均值将反应性渗流的数值上升到假设测量的空间时间尺度。通过全局随机漫步(GRW)模拟,在精细的Darcy尺度下对反应性渗流进行建模,该过程涉及到实际参与反应的分子数量以及流体的对流和扩散运动。CGST平均数值验证类似于局部平衡方程的身份验证,允许我们用平均微观量的表达式来推导流速和固有扩散系数。后者进一步用于验证CGST-GRW数值方法。该升尺度方法应用于饱和含水层和不同饱和度的土壤中的生物降解过程,并将CGST平均数值与经典的体积平均数值进行比较。结果发现,如果该过程在时间上表现出缓慢变化(如在均匀反应系统中),则两种平均数值之间的差异微不足道。反之,在土壤和饱和含水层中模拟时间依赖的生物降解过程时,差异是显著且极大的。

0
下载
关闭预览

相关内容

专知会员服务
159+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
专知会员服务
206+阅读 · 2019年8月30日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员