Sketching or doodling is a popular creative activity that people engage in. However, most existing work in automatic sketch understanding or generation has focused on sketches that are quite mundane. In this work, we introduce two datasets of creative sketches -- Creative Birds and Creative Creatures -- containing 10k sketches each along with part annotations. We propose DoodlerGAN -- a part-based Generative Adversarial Network (GAN) -- to generate unseen compositions of novel part appearances. Quantitative evaluations as well as human studies demonstrate that sketches generated by our approach are more creative and of higher quality than existing approaches. In fact, in Creative Birds, subjects prefer sketches generated by DoodlerGAN over those drawn by humans! Our code can be found at https://github.com/facebookresearch/DoodlerGAN and a demo can be found at http://doodlergan.cloudcv.org.
翻译:切除或涂鸦是人们从事的一种流行的创造性活动。然而,在自动草图理解或生成方面,大多数现有工作都集中在非常普通的草图上。在这项工作中,我们引入了两种创造性草图数据集 -- -- 创意鸟和创意生物 -- -- 包含10千个草图,每个图和部分说明。我们建议DoodlerGAN -- -- 一种有一部分基础的基因互动网络(GAN) -- -- 生成新面貌的隐形成份。定量评估和人类研究表明,我们的方法产生的草图比现有方法更有创造性,质量更高。事实上,在创意鸟中,主体更喜欢DoodlerGAN制作的草图,而不是人类绘制的草图!我们的代码可以在https://github.com/faceboursresearch/DoudrGAN上找到,一个演示可在http://doudrgan.cloudcv.org上找到。