The physical, black-box hard-label setting is arguably the most realistic threat model for cyber-physical vision systems. In this setting, the attacker only has query access to the model and only receives the top-1 class label without confidence information. Creating small physical stickers that are robust to environmental variation is difficult in the discrete and discontinuous hard-label space because the attack must both design a small shape to perturb within and find robust noise to fill it with. Unfortunately, we find that existing $\ell_2$ or $\ell_\infty$ minimizing hard-label attacks do not easily extend to finding such robust physical perturbation attacks. Thus, we propose GRAPHITE, the first algorithm for hard-label physical attacks on computer vision models. We show that "survivability", an estimate of physical variation robustness, can be used in new ways to generate small masks and is a sufficiently smooth function to optimize with gradient-free optimization. We use GRAPHITE to attack a traffic sign classifier and a publicly-available Automatic License Plate Recognition (ALPR) tool using only query access. We evaluate both tools in real-world field tests to measure its physical-world robustness. We successfully cause a Stop sign to be misclassified as a Speed Limit 30 km/hr sign in 95.7% of physical images and cause errors in 75% of physical images for the ALPR tool.
翻译:物理、 黑盒硬标签设置可能是对网络物理视觉系统最现实的威胁模式。 在此设置中, 攻击者只能查询该模型, 并且只能在没有信任信息的情况下获得顶层-1级标签。 在离散和不连续的硬标签空间中, 创建对环境变化具有强力的小物理标签很难创建。 因为攻击必须设计一个小形状来在内部窥探, 并找到强大的噪音来填补它。 不幸的是, 我们发现现有的 $\ ell_ 2$ 或$\ ell_ infty$ 将硬标签攻击最小化不易扩展至找到这种强健健的物理扰动攻击。 因此, 我们提议GRAPHITE, 这是计算机视觉模型中首个硬标签物理攻击的算法。 我们显示, “ 生存能力” 、 对物理变化稳定性的估计, 可以用新的方式生成小面具, 并且是一种足够平稳的功能, 以优化来优化。 我们使用GRAPIT来攻击交通标志分类器和公开使用的自动授权 Plate 识别工具, 我们用查询访问权来评估现实世界空间空间/ 75 的物理定位工具, 正确度测试。 我们用一个硬度的硬度的硬度 标准的硬度 。