Quantum network is the key to enable distributed quantum information processing. As the single-link communication rate decays exponentially with the distance, to enable reliable end-to-end quantum communication, the number of nodes need to grow with the network scale. For highly connected networks, we identify a threshold transition in the capacity as the density of network nodes increases -- below a critical density, the rate is almost zero, while above the threshold the rate increases linearly with the density. Notably, our prediction of the critical density is one-order-of-magnitude higher than that in the recent work [Phys. Rev. Lett.124, 210501 (2020)]. Surprisingly, above the threshold the typical communication capacity between two nodes is independent of the distance between them, due to multi-path routing enabled by the quantum network. In contrast, for less connected networks such as scale-free networks, the end-to-end capacity saturates to constants as the number of nodes increase, and always decays with the distance; Our results are based on capacity evaluations, therefore is universal for general architectures and protocols of quantum networks.
翻译:量子网络是允许分布量子信息处理的关键。 由于单链通信率随距离而指数化, 以便实现可靠的端到端量子通信, 节点的数量需要随着网络规模的增加而增长。 对于高度连接的网络来说, 我们确定一个阈值转换, 因为网络节点密度增加 -- -- 低于临界密度, 比率几乎为零, 而比临界值高一点, 而率则随着密度的密度线性增长。 值得注意的是, 我们对临界密度的预测是比最近的工作[Phys. Rev. lett.124, 210501 (2020年 ] 高一阶的磁度。 奇怪的是, 两个节点之间的典型通信能力由于量网络的多路径化而独立于它们之间的距离。 相反, 对于连接较少的网络, 如无比例网络, 端到端能力的饱和度随着节点数量的增加, 并且总是随距离的衰减; 我们的结果以能力评估为基础, 因此, 两个节点之间的典型通信能力是通用的, 量网络的一般结构和协议。