Implicit visual knowledge in a large latent diffusion model (LLDM) pre-trained on natural images is rich and hypothetically universal to natural and medical images. To test this hypothesis, we introduce a novel framework for Unsupervised Undersampled MRI Reconstruction by Prompting a pre-trained large latent Diffusion model ( U$^2$MRPD). Existing data-driven, supervised undersampled MRI reconstruction networks are typically of limited generalizability and adaptability toward diverse data acquisition scenarios; yet U$^2$MRPD supports image-specific MRI reconstruction by prompting an LLDM with an MRSampler tailored for complex-valued MRI images. With any single-source or diverse-source MRI dataset, U$^2$MRPD's performance is further boosted by an MRAdapter while keeping the generative image priors intact. Experiments on multiple datasets show that U$^2$MRPD achieves comparable or better performance than supervised and MRI diffusion methods on in-domain datasets while demonstrating the best generalizability on out-of-domain datasets. To the best of our knowledge, U$^2$MRPD is the {\bf first} unsupervised method that demonstrates the universal prowess of a LLDM, %trained on magnitude-only natural images in medical imaging, attaining the best adaptability for both MRI database-free and database-available scenarios and generalizability towards out-of-domain data.
翻译:暂无翻译