We study the linear convergence of Frank-Wolfe algorithms over product polytopes. We analyze two condition numbers for the product polytope, namely the \emph{pyramidal width} and the \emph{vertex-facet distance}, based on the condition numbers of individual polytope components. As a result, for convex objectives that are $\mu$-Polyak-{\L}ojasiewicz, we show linear convergence rates quantified in terms of the resulting condition numbers. We apply our results to the problem of approximately finding a feasible point in a polytope intersection in high-dimensions, and demonstrate the practical efficiency of our algorithms through empirical results.
翻译:我们研究了Frank-Wolfe算法在乘积多面体上的线性收敛性。基于各分多面体的条件数,我们分析了乘积多面体的两个条件数——即金字塔宽度与顶点-面距离。结果表明,对于满足$\mu$-Polyak-{\L}ojasiewicz性质的凸目标函数,我们给出了以所得条件数量化的线性收敛速率。我们将研究结果应用于高维空间中近似寻找多面体交集可行点的问题,并通过实证结果展示了所提算法的实际效率。