Scholars have focused on algorithms used during sentencing, bail, and parole, but little work explores what we call carceral algorithms that are used during incarceration. This paper is focused on the Pennsylvania Additive Classification Tool (PACT) used to classify prisoners' custody levels while they are incarcerated. Algorithms that are used during incarceration warrant deeper attention by scholars because they have the power to enact the lived reality of the prisoner. The algorithm in this case determines the likelihood a person would endure additional disciplinary actions, can complete required programming, and gain experiences that, among other things, are distilled into variables feeding into the parole algorithm. Given such power, examining algorithms used on people currently incarcerated offers a unique analytic view to think about the dialectic relationship between data and algorithms. Our examination of the PACT is two-fold and complementary. First, our qualitative overview of the historical context surrounding PACT reveals that it is designed to prioritize incapacitation and control over rehabilitation. While it closely informs prisoner rehabilitation plans and parole considerations, it is rooted in population management for prison securitization. Second, on analyzing data for 146,793 incarcerated people in PA, along with associated metadata related to the PACT, we find it is replete with racial bias as well as errors, omissions, and inaccuracies. Our findings to date further caution against data-driven criminal justice reforms that rely on pre-existing data infrastructures and expansive, uncritical, data-collection routines.


翻译:学者们侧重于在判刑、保释和假释期间使用的算法,但很少工作探索我们所称的监禁期间使用的宫颈算法。本文侧重于宾夕法尼亚州Additive分类工具(PACT),用于对囚犯监禁期间的监禁水平进行分类。监禁期间使用的算法值得学者们更深入地关注,因为他们有权力颁布囚犯的活生生的现实。本案的算法决定了一个人可能承受更多的纪律行动,能够完成必要的程序拟定,并获得经验,这些经验除其他外被浓缩成融入假释算法的变数。鉴于这种能力,对目前被监禁的人使用的算法提供了独特的分析性观点,以思考数据和算法之间的辩证关系。我们对PACT的检查是双重和互补的。首先,我们对PACT的历史背景的定性概述表明,它旨在将恢复的能力和控制放在对康复的优先位置上。虽然它密切地告知囚犯的康复计划和假释考虑,但它植根于监狱安全的人口管理。第二,对146793年被监禁的人所使用的算法提供了一种独特的分析数据,而我们从错误的刑事分析,我们的数据与前的错误数据是,我们作为历史数据, 的错误的错误的,我们又从数据库中找到了。

0
下载
关闭预览

相关内容

PACT:International Conference on Parallel Architectures and Compilation Techniques。 Explanation:并行结构与编译技术国际会议。 Publisher:IEEE/ACM。 SIT: http://dblp.uni-trier.de/db/conf/IEEEpact/
【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
67+阅读 · 2021年11月15日
专知会员服务
41+阅读 · 2020年9月6日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2022年2月7日
Arxiv
0+阅读 · 2022年2月6日
Arxiv
0+阅读 · 2022年2月3日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关资讯
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员