We develop a tool that extracts emotions from social media text data. Our methodology has three main advantages. First, it is tailored for financial context; second, it incorporates key aspects of social media data, such as non-standard phrases, emojis and emoticons; and third, it operates by sequentially learning a latent representation that includes features such as word order, word usage, and local context. This tool, along with a user guide is available at: https://github.com/dvamossy/EmTract. Using EmTract, we explore the relationship between investor emotions expressed on social media and asset prices. We document a number of interesting insights. First, we confirm some of the findings of controlled laboratory experiments relating investor emotions to asset price movements. Second, we show that investor emotions are predictive of daily price movements. These impacts are larger when volatility or short interest are higher, and when institutional ownership or liquidity are lower. Third, increased investor enthusiasm prior to the IPO contributes to the large first-day return and long-run underperformance of IPO stocks. To corroborate our results, we provide a number of robustness checks, including using an alternative emotion model. Our findings reinforce the intuition that emotions and market dynamics are closely related, and highlight the importance of considering investor emotions when assessing a stock's short-term value.
翻译:我们开发了一个工具,从社交媒体文本数据中提取情感。 我们的方法有三大优势。 首先,我们根据金融背景量身定制; 第二,我们吸收了社交媒体数据的关键方面,如非标准短语、emojis和表情; 第三,我们通过顺序学习潜在代表,包括单词顺序、单词使用和当地背景等特征。这个工具,连同用户指南,可在https://github.com/dvamossy/EmTract上查阅。我们利用EmTract,我们探索在社交媒体和资产价格上表达的投资者情感之间的关系。我们记录了一些有趣的见解。首先,我们确认一些与资产价格变动有关的受控实验室实验的结果。第二,我们表明投资者情绪是预测日常价格变动的。当波动性或短期兴趣较高,当机构所有权或流动性较低时,这些影响更大。 第三,在IPO之前投资者的热情增加有助于IPO股票的大规模首日回报和长期业绩不佳。 我们提供了一些与资产价格波动相关的情感分析,我们用一种与市场动态的情感密切评估来评估。