Thermal infrared cameras are increasingly being used in various applications such as robot vision, industrial inspection and medical imaging, thanks to their improved resolution and portability. However, the performance of traditional computer vision techniques developed for electro-optical imagery does not directly translate to the thermal domain due to two major reasons: these algorithms require photometric assumptions to hold, and methods for photometric calibration of RGB cameras cannot be applied to thermal-infrared cameras due to difference in data acquisition and sensor phenomenology. In this paper, we take a step in this direction, and introduce a novel algorithm for online photometric calibration of thermal-infrared cameras. Our proposed method does not require any specific driver/hardware support and hence can be applied to any commercial off-the-shelf thermal IR camera. We present this in the context of visual odometry and SLAM algorithms, and demonstrate the efficacy of our proposed system through extensive experiments for both standard benchmark datasets, and real-world field tests with a thermal-infrared camera in natural outdoor environments.
翻译:热红外摄影机越来越多地用于机器人视觉、工业检查和医疗成像等各种应用,因为其分辨率和可移动性得到改进;然而,为电子光学图像开发的传统计算机视觉技术的性能由于两个主要原因没有直接转化为热域:这些算法要求保持光度假设,而且由于数据采集和感应阴道学的差异,红外摄影机的光度校准方法不能应用于热红外摄影机;在本文件中,我们朝这个方向迈出了一步,并引入了热红外摄影机在线光度校准的新算法;我们提议的方法不需要任何特定的驾驶/硬件支持,因此可以适用于任何商业的现成热IR照相机;我们在视觉观察测量和SLAM算法方面介绍这一点,并通过对标准基准数据集的广泛试验和在自然室外环境中使用热红外摄影机进行真实世界现场试验,展示我们提议的系统的效率。