Precisely modeling radio propagation in complex environments has been a significant challenge, especially with the advent of 5G and beyond networks, where managing massive antenna arrays demands more detailed information. Traditional methods, such as empirical models and ray tracing, often fall short, either due to insufficient details or with challenges for real-time applications. Inspired by the newly proposed 3D Gaussian Splatting method in computer vision domain, which outperforms in reconstructing optical radiance fields, we propose RF-3DGS, a novel approach that enables precise site-specific reconstruction of radio radiance fields from sparse samples. RF-3DGS can render spatial spectra at arbitrary positions within 2 ms following a brief 3-minute training period, effectively identifying dominant propagation paths at these locations. Furthermore, RF-3DGS can provide fine-grained Channel State Information (CSI) of these paths, including the angle of departure and delay. Our experiments, calibrated through real-world measurements, demonstrate that RF-3DGS not only significantly improves rendering quality, training speed, and rendering speed compared to state-of-the-art methods but also holds great potential for supporting wireless communication and advanced applications such as Integrated Sensing and Communication (ISAC).
翻译:暂无翻译