This paper describes a system by which Unmanned Aerial Vehicles (UAVs) can gather high-quality face images that can be used in biometric identification tasks. Success in face-based identification depends in large part on the image quality, and a major factor is how frontal the view is. Face recognition software pipelines can improve identification rates by synthesizing frontal views from non-frontal views by a process call {\em frontalization}. Here we exploit the high mobility of UAVs to actively gather frontal images using components of a synthetic frontalization pipeline. We define a frontalization error and show that it can be used to guide an UAVs to capture frontal views. Further, we show that the resulting image stream improves matching quality of a typical face recognition similarity metric. The system is implemented using an off-the-shelf hardware and software components and can be easily transfered to any ROS enabled UAVs.
翻译:本文描述一个系统,使无人驾驶飞行器(UAVs)能够收集可用于生物鉴别任务的高品质脸部图像。 脸部识别成功与否在很大程度上取决于图像质量,一个主要因素是视图的正面。 面部识别软件管道可以通过一个进程电话“ implalization” 将非前端观点的正面观点综合起来,从而提高识别率。 在这里,我们利用无人驾驶飞行器的高度机动性,利用合成前方化管道的部件积极收集前方图像。 我们定义了前方错误,并显示它可用于指导无人驾驶飞行器捕捉前方视图。 此外,我们显示,由此产生的图像流提高了典型面部识别相似度指标的质量。 该系统是使用现成的硬件和软件组件实施的,并且可以很容易地传输到任何已启用的快速导航系统。