Self-supervised pre-training for 3D vision has drawn increasing research interest in recent years. In order to learn informative representations, a lot of previous works exploit invariances of 3D features, e.g., perspective-invariance between views of the same scene, modality-invariance between depth and RGB images, format-invariance between point clouds and voxels. Although they have achieved promising results, previous researches lack a systematic and fair comparison of these invariances. To address this issue, our work, for the first time, introduces a unified framework, under which various pre-training methods can be investigated. We conduct extensive experiments and provide a closer look at the contributions of different invariances in 3D pre-training. Also, we propose a simple but effective method that jointly pre-trains a 3D encoder and a depth map encoder using contrastive learning. Models pre-trained with our method gain significant performance boost in downstream tasks. For instance, a pre-trained VoteNet outperforms previous methods on SUN RGB-D and ScanNet object detection benchmarks with a clear margin.


翻译:近些年来,自我监督的三维愿景培训前培训吸引了越来越多的研究兴趣。为了了解信息,许多以往的工作利用了三维特征的变量,例如:同一场景观点之间的视角差异、深度和 RGB 图像之间的模式差异、点云和氧化物之间的格式差异。虽然取得了可喜的成果,但以往的研究缺乏对这些差异的系统和公正的比较。为解决这一问题,我们的工作首次引入了一个统一框架,据此可以调查各种培训前方法。我们进行了广泛的实验,并更仔细地审视了3D 培训前不同变量的贡献。此外,我们还提出了一个简单而有效的方法,即利用对比性学习,将3D 编码器和深度图解码结合起来。先接受过我们方法培训的模型在下游任务中获得了显著的性能提升。例如,培训前的VoteNet超越了SUN RGB-D 和扫描网络目标探测基准的以往方法。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年9月2日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员