Autonomous underwater vehicles rely on precise navigation systems that combine the inertial navigation system and the Doppler velocity log for successful missions in challenging environments where satellite navigation is unavailable. The effectiveness of this integration critically depends on accurate alignment between the sensor reference frames. Standard model-based alignment methods between these sensor systems suffer from lengthy convergence times, dependence on prescribed motion patterns, and reliance on external aiding sensors, significantly limiting operational flexibility. To address these limitations, this paper presents ResAlignNet, a data-driven approach using the 1D ResNet-18 architecture that transforms the alignment problem into deep neural network optimization, operating as an in-situ solution that requires only sensors on board without external positioning aids or complex vehicle maneuvers, while achieving rapid convergence in seconds. Additionally, the approach demonstrates the learning capabilities of Sim2Real transfer, enabling training in synthetic data while deploying in operational sensor measurements. Experimental validation using the Snapir autonomous underwater vehicle demonstrates that ResAlignNet achieves alignment accuracy within 0.8° using only 25 seconds of data collection, representing a 65\% reduction in convergence time compared to standard velocity-based methods. The trajectory-independent solution eliminates motion pattern requirements and enables immediate vehicle deployment without lengthy pre-mission procedures, advancing underwater navigation capabilities through robust sensor-agnostic alignment that scales across different operational scenarios and sensor specifications.
翻译:自主水下航行器依赖于结合惯性导航系统和多普勒计程仪的精确导航系统,以在卫星导航不可用的挑战性环境中成功执行任务。该集成的有效性关键取决于传感器参考系之间的精确对准。这些传感器系统之间标准的基于模型的对准方法存在收敛时间长、依赖预设运动模式以及需要外部辅助传感器的问题,显著限制了操作灵活性。为解决这些局限性,本文提出ResAlignNet,一种采用一维ResNet-18架构的数据驱动方法,将对准问题转化为深度神经网络优化,作为一种原位解决方案运行,仅需船上传感器而无需外部定位辅助或复杂航行器机动,同时能在数秒内实现快速收敛。此外,该方法展示了Sim2Real迁移的学习能力,支持在合成数据中训练并在实际传感器测量中部署。基于Snapir自主水下航行器的实验验证表明,ResAlignNet仅需25秒数据采集即可实现0.8°以内的对准精度,相比标准基于速度的方法收敛时间减少65%。该轨迹无关的解决方案消除了对运动模式的要求,使航行器无需冗长的任务前程序即可立即部署,通过鲁棒的传感器无关对准提升了水下导航能力,可适应不同操作场景和传感器规格。