Probabilistic graphical models (PGMs) are powerful tools for representing statistical dependencies through graphs in high-dimensional systems. However, they are limited to pairwise interactions. In this work, we propose the simplicial Gaussian model (SGM), which extends Gaussian PGM to simplicial complexes. SGM jointly models random variables supported on vertices, edges, and triangles, within a single parametrized Gaussian distribution. Our model builds upon discrete Hodge theory and incorporates uncertainty at every topological level through independent random components. Motivated by applications, we focus on the marginal edge-level distribution while treating node- and triangle-level variables as latent. We then develop a maximum-likelihood inference algorithm to recover the parameters of the full SGM and the induced conditional dependence structure. Numerical experiments on synthetic simplicial complexes with varying size and sparsity confirm the effectiveness of our algorithm.


翻译:概率图模型(PGMs)是通过图表示高维系统中统计依赖关系的强大工具,但其仅限于成对交互。本文提出单纯形高斯模型(SGM),将高斯概率图模型扩展至单纯复形。SGM在单一参数化高斯分布内,联合建模顶点、边和三角形上支撑的随机变量。该模型基于离散霍奇理论,通过独立随机分量在每个拓扑层级纳入不确定性。受应用驱动,我们聚焦于边缘层级的边际分布,同时将节点和三角形层级的变量视为隐变量。随后,我们开发了一种最大似然推断算法,用于恢复完整SGM的参数及其诱导的条件依赖结构。在不同规模和稀疏度的合成单纯复形上进行的数值实验验证了算法的有效性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
70+阅读 · 2022年6月30日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
16+阅读 · 2019年4月4日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
70+阅读 · 2022年6月30日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
16+阅读 · 2019年4月4日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员