Nowadays, the videos on the Internet are prevailing. The precise and in-depth understanding of the videos is a difficult but valuable problem for both platforms and researchers. The existing video understand models do well in object recognition tasks but currently still cannot understand the abstract and contextual features like highlight humor frames in comedy videos. The current industrial works are also mainly focused on the basic category classification task based on the appearances of objects. The feature detection methods for the abstract category remains blank. A data structure that includes the information of video frames, audio spectrum and texts provide a new direction to explore. The multimodal models are proposed to make this in-depth video understanding mission possible. In this paper, we analyze the difficulties in abstract understanding of videos and propose a multimodal structure to obtain state-of-the-art performance in this field. Then we select several benchmarks for multimodal video understanding and apply the most suitable model to find the best performance. At last, we evaluate the overall spotlights and drawbacks of the models and methods in this paper and point out the possible directions for further improvements.


翻译:目前,互联网上的视频很普遍。对视频的准确和深入理解对于平台和研究人员来说都是一个困难但宝贵的问题。现有的视频理解模型在目标识别任务方面做得很好,但目前仍然无法理解抽象和背景特征,如喜剧视频中的突出幽默框架。目前的工业作品还主要侧重于基于物体外观的基本分类任务。抽象类别的特征检测方法仍然空白。包含视频框架、频谱和文本信息的数据结构提供了新的探索方向。提出多式联运模型是为了让这一深入视频理解任务成为可能。在本文件中,我们分析了抽象理解视频的困难,并提出了获得该领域最新业绩的多式联运结构。然后我们选择了多种视频理解的若干基准,并运用了最合适的模型来找到最佳性能。最后,我们评估了本文中模型和方法的总体焦点和缺陷,并指出了可能的进一步改进方向。

0
下载
关闭预览

相关内容

【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员