Humans race drones faster than algorithms, despite being limited to a fixed camera angle, body rate control, and response latencies in the order of hundreds of milliseconds. A better understanding of the ability of human pilots of selecting appropriate motor commands from highly dynamic visual information may provide key insights for solving current challenges in vision-based autonomous navigation. This paper investigates the relationship between human eye movements, control behavior, and flight performance in a drone racing task. We collected a multimodal dataset from 21 experienced drone pilots using a highly realistic drone racing simulator, also used to recruit professional pilots. Our results show task-specific improvements in drone racing performance over time. In particular, we found that eye gaze tracks future waypoints (i.e., gates), with first fixations occurring on average 1.5 seconds and 16 meters before reaching the gate. Moreover, human pilots consistently looked at the inside of the future flight path for lateral (i.e., left and right turns) and vertical maneuvers (i.e., ascending and descending). Finally, we found a strong correlation between pilots eye movements and the commanded direction of quadrotor flight, with an average visual-motor response latency of 220 ms. These results highlight the importance of coordinated eye movements in human-piloted drone racing. We make our dataset publicly available.
翻译:人类的无人机比算法速度快, 尽管它局限于固定的摄像角度、机率控制和反应迟缓, 仅限数百毫秒左右。 更好地了解人类飞行员从高度动态的视觉信息中选择适当的发动机指令的能力, 可能会为解决基于视觉的自主导航中目前的挑战提供关键的洞见。 本文调查了人类眼运动、 控制行为和无人机比赛任务中的飞行表现之间的关系。 我们从21个经验丰富的无人机飞行员那里收集了多式数据集, 使用了高度现实的无人机赛模拟器, 也用于招聘专业飞行员。 我们的结果表明无人机赛跑的性能在一段时间内有特定改进。 特别是, 我们发现, 眼视跟踪跟踪跟踪未来路标( 即大门) 的能力, 可能是在到达大门前平均1.5秒和16米处进行初步定位。 此外, 人类飞行员持续查看未来飞行路径的内侧侧( 即左转和右转) 和垂直导航( 也用于招聘专业飞行员 ) 。 最后, 我们发现飞行员的眼睛运动运动和台式飞行的指挥方向之间有很强的关联性关系, 我们的直观和直观机飞行的定位定位显示, 202020号的定位显示, 我们的飞行中的平均方向具有重要。