The theory of learning in games has extensively studied situations where agents respond dynamically to each other in light of a fixed utility function. However, in many settings of interest, agent utility functions themselves vary as a result of past agent choices. The ongoing COVID-19 pandemic has highlighted the need to formulate and analyze such models which feature game-environment feedback. For instance, a highly prevalent virus may incentivize individuals to wear masks, but extensive adoption of mask-wearing reduces virus prevalence which in turn reduces individual incentives for mask-wearing. What is the interplay between epidemic severity and the behaviors of a victim population? For initial answers, we develop a general framework using probabilistic coupling methods that can be used to derive the stochastically stable states of log-linear learning in certain games which feature such game-environment feedback. We then apply this framework to a simple dynamic game-theoretic model of social precautions in an epidemic and give conditions under which maximally-cautious social behavior in this model is stochastically stable.


翻译:游戏中的学习理论已经广泛研究了代理商根据固定的公用事业功能动态应对的情况。 但是,在许多感兴趣的环境中,代理商的功能本身因过去的代理商选择而不同。 正在发生的COVID-19大流行突出表明需要制定和分析以游戏-环境反馈为特点的模型。 例如,一种高度流行的病毒可能激励个人戴面具,但广泛采用戴面具的做法会减少病毒流行,这反过来又会减少个人戴面具的诱因。 流行严重程度与受害者群体行为之间的相互作用是什么? 对于最初的答案,我们开发了一个总体框架,使用概率性混合方法,可以用来在某些游戏-环境反馈为特点的游戏中得出逻辑-线性学习的随机稳定状态。 然后,我们将这一框架应用于一个简单的动态游戏-理论模式,在流行病中,社会防范措施的动态模式,并创造条件,在这个模式中,最审慎的社会行为是稳定的。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
8+阅读 · 2020年10月7日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员