In this study, we analyse the convergence and stability of dynamic system optimal (DSO) traffic assignment with fixed departure times. We first formulate the DSO traffic assignment problem as a strategic game wherein atomic users select routes that minimise their marginal social costs, called a 'DSO game'. By utilising the fact that the DSO game is a potential game, we prove that a globally optimal state is a stochastically stable state under the logit response dynamics, and the better/best response dynamics converges to a locally optimal state. Furthermore, as an application of DSO assignment, we examine characteristics of the evolutionary implementation scheme of marginal cost pricing. Through theoretical comparison with a fixed pricing scheme, we found the following properties of the evolutionary implementation scheme: (i) the total travel time decreases smoother to an efficient traffic state as congestion externalities are perfectly internalised; (ii) a traffic state would reach a more efficient state as the globally optimal state is stabilised. Numerical experiments also suggest that these properties make the evolutionary scheme robust in the sense that they prevent a traffic state from going to worse traffic states with high total travel times.
翻译:在这项研究中,我们分析了动态系统最佳交通任务固定离开时间的趋同性和稳定性。我们首先将DSO交通任务分配问题设计成一种战略游戏,让原子用户选择尽可能降低其边际社会成本的路线,称为“DSO游戏 ” 。我们利用DSO游戏是一个潜在的游戏这一事实,证明全球最佳状态在逻辑反应动态下是一个随机稳定状态,而更好的/最好的反应动态会聚集到一个地方最佳状态。此外,作为DSO任务的应用,我们研究了边际成本定价的渐进执行计划的特点。我们通过对一个固定价格计划进行理论比较,发现了进化执行计划的以下特性:(一)总旅行时间减少到高效的交通状态,因为拥堵的外部因素完全内部化;(二)随着全球最佳状态的稳定,交通状态会达到更有效率的状态。数量实验还表明,这些特性使得进化计划变得强大,因为它们能防止交通状况恶化,总旅行时间会很高。