This paper studies the decentralized optimization and learning problem where multiple interconnected agents aim to learn an optimal decision function defined over a reproducing kernel Hilbert space by jointly minimizing a global objective function, with access to their own locally observed dataset. As a non-parametric approach, kernel learning faces a major challenge in distributed implementation: the decision variables of local objective functions are data-dependent and thus cannot be optimized under the decentralized consensus framework without any raw data exchange among agents. To circumvent this major challenge, we leverage the random feature (RF) approximation approach to enable consensus on the function modeled in the RF space by data-independent parameters across different agents. We then design an iterative algorithm, termed DKLA, for fast-convergent implementation via ADMM. Based on DKLA, we further develop a communication-censored kernel learning (COKE) algorithm that reduces the communication load of DKLA by preventing an agent from transmitting at every iteration unless its local updates are deemed informative. Theoretical results in terms of linear convergence guarantee and generalization performance analysis of DKLA and COKE are provided. Comprehensive tests on both synthetic and real datasets are conducted to verify the communication efficiency and learning effectiveness of COKE.
翻译:本文研究分散化优化和学习问题,即多个相互关联的代理商的目的是通过共同尽量减少一个全球目标功能,以获取当地观测的数据集,学习一个在复制核心Hilbert空间时界定的最佳决策功能,从而学习一个最佳决策功能。作为一种非参数方法,核心学习在分布式执行中面临一个重大挑战:地方目标功能的决策变量取决于数据,因此,在分散化的共识框架下,如果没有代理商之间的原始数据交流,就无法优化;为避免这一重大挑战,我们利用随机特征(RF)近似方法,使不同代理商之间通过数据独立的参数就俄罗斯联邦空间模型的功能达成共识。然后,我们设计一种迭代算法,称为DKLA,通过ADMM快速兼容执行。基于DKLA,我们进一步开发通信-审查核心学习(COKE)算法,通过防止代理商在每次循环中传输通信量,除非其本地更新被视为信息。在DKLA和COKE的线性整合和通用性性业绩分析方面得出理论结果,以便通过DKLA和CE进行实时的合成测试。