Monitoring the correctness of distributed cyber-physical systems is essential. We address the analysis of the log of a black-box cyber-physical system. Detecting possible safety violations can be hard when some samples are uncertain or missing. In this work, the log is made of values known with some uncertainty; in addition, we make use of an over-approximated yet expressive model, given by a non-linear extension of dynamical systems. Given an offline log, our approach is able to monitor the log against safety specifications with a limited number of false alarms. As a second contribution, we show that our approach can be used online to minimize the number of sample triggers, with the aim at energetic efficiency. We apply our approach to two benchmarks, an anesthesia model and an adaptive cruise controller.
翻译:监控分布式网络物理系统的正确性至关重要。 我们处理黑箱网络物理系统的日志分析问题。 当某些样本不确定或缺失时, 检测可能的违反安全情况会很困难。 在这项工作中, 日志是由已知的值和某些不确定性组成的; 此外, 我们使用一个过于近似但又能表达的模型, 由动态系统的非线性扩展提供。 根据一个离线日志, 我们的方法能够用数量有限的假警报来监控日志的安全规格。 作为第二个贡献, 我们显示我们的方法可以在线使用, 最大限度地减少样本触发器的数量, 目的是提高效率。 我们对两个基准, 一个麻醉模型和一个适应性游轮控制器应用了我们的方法。