The goal of phaseless compressed sensing is to recover an unknown sparse or approximately sparse signal from the magnitude of its measurements. However, it does not take advantage of any support information of the original signal. Therefore, our main contribution in this paper is to extend the theoretical framework for phaseless compressed sensing to incorporate with prior knowledge of the support structure of the signal. Specifically, we investigate two conditions that guarantee stable recovery of a weighted $k$-sparse signal via weighted l1 minimization without any phase information. We first prove that the weighted null space property (WNSP) is a sufficient and necessary condition for the success of weighted l1 minimization for weighted k-sparse phase retrievable. Moreover, we show that if a measurement matrix satisfies the strong weighted restricted isometry property (SWRIP), then the original signal can be stably recovered from the phaseless measurements.


翻译:无阶段性压缩遥感的目标是从测量量的大小中回收一个未知的稀有或近乎稀少的信号,但没有利用原始信号的任何支持信息,因此,我们在本文件中的主要贡献是扩大无阶段性压缩遥感的理论框架,在事先了解该信号的支持结构的情况下纳入其中。具体地说,我们调查两个条件,以保证通过加权的11级最小化,通过加权的11级最小化,稳定地回收加权的1K美元偏差信号。我们首先证明加权的空域(WNSP)是使加权的1级最小化以达到可重控的K-偏差阶段的可再取用状态的足够和必要的条件。此外,我们表明,如果计量矩阵满足了强重度加权的有限量性属性(SWRIP),那么原始信号就可以从无阶段性测量中被快速恢复。

0
下载
关闭预览

相关内容

Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
已删除
将门创投
3+阅读 · 2019年4月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
已删除
将门创投
3+阅读 · 2019年4月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员