The goal of phaseless compressed sensing is to recover an unknown sparse or approximately sparse signal from the magnitude of its measurements. However, it does not take advantage of any support information of the original signal. Therefore, our main contribution in this paper is to extend the theoretical framework for phaseless compressed sensing to incorporate with prior knowledge of the support structure of the signal. Specifically, we investigate two conditions that guarantee stable recovery of a weighted $k$-sparse signal via weighted l1 minimization without any phase information. We first prove that the weighted null space property (WNSP) is a sufficient and necessary condition for the success of weighted l1 minimization for weighted k-sparse phase retrievable. Moreover, we show that if a measurement matrix satisfies the strong weighted restricted isometry property (SWRIP), then the original signal can be stably recovered from the phaseless measurements.
翻译:无阶段性压缩遥感的目标是从测量量的大小中回收一个未知的稀有或近乎稀少的信号,但没有利用原始信号的任何支持信息,因此,我们在本文件中的主要贡献是扩大无阶段性压缩遥感的理论框架,在事先了解该信号的支持结构的情况下纳入其中。具体地说,我们调查两个条件,以保证通过加权的11级最小化,通过加权的11级最小化,稳定地回收加权的1K美元偏差信号。我们首先证明加权的空域(WNSP)是使加权的1级最小化以达到可重控的K-偏差阶段的可再取用状态的足够和必要的条件。此外,我们表明,如果计量矩阵满足了强重度加权的有限量性属性(SWRIP),那么原始信号就可以从无阶段性测量中被快速恢复。