Error management in the quantum Internet requires stateful and stochastic processing across multiple nodes, which is a significant burden. In view of the history of the current Internet, the end-to-end principle was devised for error management, simplifying the work inside the network and contributing significantly to the scalability of the Internet. In this paper, we propose to bring the end-to-end principle into the error management of quantum Internet to improve the communication resource utilization efficiency of a quantum Internet. The simulation results show that the error management using the end-to-end principle and locality can be more resource-efficient than other settings. In addition, when end-to-end error management is used, if the error probability of qubits in the end node is sufficiently low, there is no problem even if the error probability on the network side is higher than that in the end node, and the load on the network can be reduced. Our proposal will contribute to improving the communication capacity and scalability of the quantum Internet, as well as to improve the interoperability of quantum Autonomous Systems. In addition, existing studies on routing and other aspects of the quantum Internet may exclude error management from their scope due to its complexity. The results of this study provide validity to the assumptions of such studies.


翻译:量子互联网的错误管理要求对多个节点进行明确和随机的处理,这是一个巨大的负担。鉴于当前互联网的历史,设计端到端原则是为了进行错误管理,简化网络内部的工作,大大促进互联网的可扩缩性。在本文件中,我们提议将端到端原则纳入量子互联网的错误管理,以提高量子互联网的通信资源利用效率。模拟结果显示,使用端到端原则和地点的错误管理比其他设置的资源效率更高。此外,在使用端到端错误管理时,如果终端节点的qubit误差概率足够低,即使网络侧的误差概率高于端节点,而且网络的负载可以减少,也不存在问题。我们的建议将有助于提高通信能力和量子互联网的可扩缩性,以及提高量子自动系统之间的互操作性。此外,在使用端到端错误管理时,如果终端节点的Qubits的误差概率足够低,即使网络的误差概率高于终端节点,网络的负载量也能够减少。我们的建议将有助于提高通信能力和量子互联网的可调度,同时提高量子自动化系统的互操作性。此外,现有的关于路径和量子互联网的偏差研究和其他方面的研究也将排除其误差范围。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

NeurIPS 20201接收论文列表发布,2334篇论文都在这了!
专知会员服务
38+阅读 · 2021年11月4日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
114+阅读 · 2020年10月8日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月16日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员