Modern systems that rely on Machine Learning (ML) for predictive modelling, may suffer from the cold-start problem: supervised models work well but, initially, there are no labels, which are costly or slow to obtain. This problem is even worse in imbalanced data scenarios, where labels of the positive class take longer to accumulate. We propose an Active Learning (AL) system for datasets with orders of magnitude of class imbalance, in a cold start streaming scenario. We present a computationally efficient Outlier-based Discriminative AL approach (ODAL) and design a novel 3-stage sequence of AL labeling policies where ODAL is used as warm-up. Then, we perform empirical studies in four real world datasets, with various magnitudes of class imbalance. The results show that our method can more quickly reach a high performance model than standard AL policies without ODAL warm-up. Its observed gains over random sampling can reach 80% and be competitive with policies with an unlimited annotation budget or additional historical data (using just 2% to 10% of the labels).
翻译:依靠机器学习(ML)进行预测建模的现代系统可能受到冷启动问题的影响:受监督的模式运作良好,但最初没有标签,这些标签成本高或速度慢。 这个问题在不平衡的数据假设中更为严重,正级标签需要更长的时间积累。 我们提议在冷启动流的假设中,为等级不平衡程度不等的数据集建立一个主动学习系统(AL)系统。 我们提出了一个基于外部差异的基于外部差异性AL方法(ODAL)的计算效率高的系统,并设计一个新的AL 标签政策三阶段序列,其中使用官方发展援助L作为暖气。 然后,我们在四个真实的世界数据集中进行实验性研究,其分类不平衡程度各有不同。 结果表明,我们的方法可以比标准AL政策更快地达到高的性能模型,而没有官方发展援助L值的加热度。 其观察到的随机抽样收益可以达到80%,并且具有无限制的注资预算或额外历史数据(仅使用2%至10%的标签 ) 。