Interval-censored data solely records the aggregated counts of events during specific time intervals - such as the number of patients admitted to the hospital or the volume of vehicles passing traffic loop detectors - and not the exact occurrence time of the events. It is currently not understood how to fit the Hawkes point processes to this kind of data. Its typical loss function (the point process log-likelihood) cannot be computed without exact event times. Furthermore, it does not have the independent increments property to use the Poisson likelihood. This work builds a novel point process, a set of tools, and approximations for fitting Hawkes processes within interval-censored data scenarios. First, we define the Mean Behavior Poisson process (MBPP), a novel Poisson process with a direct parameter correspondence to the popular self-exciting Hawkes process. We fit MBPP in the interval-censored setting using an interval-censored Poisson log-likelihood (IC-LL). We use the parameter equivalence to uncover the parameters of the associated Hawkes process. Second, we introduce two novel exogenous functions to distinguish the exogenous from the endogenous events. We propose the multi-impulse exogenous function - for when the exogenous events are observed as event time - and the latent homogeneous Poisson process exogenous function - for when the exogenous events are presented as interval-censored volumes. Third, we provide several approximation methods to estimate the intensity and compensator function of MBPP when no analytical solution exists. Fourth and finally, we connect the interval-censored loss of MBPP to a broader class of Bregman divergence-based functions. Using the connection, we show that the popularity estimation algorithm Hawkes Intensity Process (HIP) is a particular case of the MBPP. We verify our models through empirical testing on synthetic data and real-world data.


翻译:在特定时间间隔内, 光是普查数据仅记录事件的汇总计数, 例如医院收治的病人人数或通过交通环路探测器的车辆数量, 而不是事件的准确发生时间。 目前无法理解如何将霍克斯点点点进程与这类数据匹配。 典型的损失函数( 点进程日志类似) 无法在不精确事件时间间隔的情况下计算 。 此外, 它没有独立的递增属性来使用 Poisson 概率( IPIS) 。 这项工作建立了一个新点进程, 一套工具, 以及将霍克斯进程安装在隔天检查的数据假设情景内。 首先, 我们定义了Mode Behavior Poisson 进程( MBPPP 进程), 一个新的 Poisson 进程与流行的自我刺激的霍克斯进程直接参数对应。 我们将MMBODP 模型的间歇性数据显示为间歇性 PIDFI 数据测试数据, 我们使用较宽的参数来发现相关霍克斯进程的参数。 第二, 我们引入两个新外端数据函数, 将MBIFIFI 数据显示我们所观察到的机级数据运行的机级数据运行功能, 当我们用来将多少级数据显示时, 当我们所观察到的机级数据显示的机极值数据显示的机极值数据显示的机极值数据变现时, 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
161+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月26日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员