Interval-censored data solely records the aggregated counts of events during specific time intervals - such as the number of patients admitted to the hospital or the volume of vehicles passing traffic loop detectors - and not the exact occurrence time of the events. It is currently not understood how to fit the Hawkes point processes to this kind of data. Its typical loss function (the point process log-likelihood) cannot be computed without exact event times. Furthermore, it does not have the independent increments property to use the Poisson likelihood. This work builds a novel point process, a set of tools, and approximations for fitting Hawkes processes within interval-censored data scenarios. First, we define the Mean Behavior Poisson process (MBPP), a novel Poisson process with a direct parameter correspondence to the popular self-exciting Hawkes process. We fit MBPP in the interval-censored setting using an interval-censored Poisson log-likelihood (IC-LL). We use the parameter equivalence to uncover the parameters of the associated Hawkes process. Second, we introduce two novel exogenous functions to distinguish the exogenous from the endogenous events. We propose the multi-impulse exogenous function - for when the exogenous events are observed as event time - and the latent homogeneous Poisson process exogenous function - for when the exogenous events are presented as interval-censored volumes. Third, we provide several approximation methods to estimate the intensity and compensator function of MBPP when no analytical solution exists. Fourth and finally, we connect the interval-censored loss of MBPP to a broader class of Bregman divergence-based functions. Using the connection, we show that the popularity estimation algorithm Hawkes Intensity Process (HIP) is a particular case of the MBPP. We verify our models through empirical testing on synthetic data and real-world data.
翻译:在特定时间间隔内, 光是普查数据仅记录事件的汇总计数, 例如医院收治的病人人数或通过交通环路探测器的车辆数量, 而不是事件的准确发生时间。 目前无法理解如何将霍克斯点点点进程与这类数据匹配。 典型的损失函数( 点进程日志类似) 无法在不精确事件时间间隔的情况下计算 。 此外, 它没有独立的递增属性来使用 Poisson 概率( IPIS) 。 这项工作建立了一个新点进程, 一套工具, 以及将霍克斯进程安装在隔天检查的数据假设情景内。 首先, 我们定义了Mode Behavior Poisson 进程( MBPPP 进程), 一个新的 Poisson 进程与流行的自我刺激的霍克斯进程直接参数对应。 我们将MMBODP 模型的间歇性数据显示为间歇性 PIDFI 数据测试数据, 我们使用较宽的参数来发现相关霍克斯进程的参数。 第二, 我们引入两个新外端数据函数, 将MBIFIFI 数据显示我们所观察到的机级数据运行的机级数据运行功能, 当我们用来将多少级数据显示时, 当我们所观察到的机级数据显示的机极值数据显示的机极值数据显示的机极值数据变现时, 。