In recent years, the Multi-message Private Information Retrieval (MPIR) problem has received significant attention from the research community. In this problem, a user wants to privately retrieve $D$ messages out of $K$ messages whose identical copies are stored on $N$ remote servers, while maximizing the download rate. The MPIR schemes can find applications in many practical scenarios and can serve as an important building block for private computation and private machine learning applications. The existing solutions for MPIR require a large degree of subpacketization, which can result in large overheads, high complexity, and impose constraints on the system parameters. These factors can limit practical applications of the existing solutions. In this paper, we present a methodology for the design of scalar-linear MPIR schemes. Such schemes are easy to implement in practical systems as they do not require partitioning of messages into smaller size sub-messages and do not impose any constraints on the minimum required size of the messages. Focusing on the case of $N=D+1$, we show that when $D$ divides $K$, our scheme achieves the capacity, where the capacity is defined as the maximum achievable download rate. When the divisibility condition does not hold, the performance of our scheme is the same or within a small additive margin compared to the best known scheme that requires a high degree of subpacketization.
翻译:近年来,多信息私人信息检索(MPIR)问题受到研究界的极大关注,在此问题上,用户希望私下从美元信息中提取美元信息,其相同副本存储在$美元远程服务器上,同时最大限度地提高下载率。多信息检索计划在许多实际情景中可以找到应用,并可作为私人计算和私人机器学习应用的重要基石。目前对MPIR的解决方案需要大量子包装,这可能导致巨额间接费用、高度复杂和对系统参数施加限制。这些因素可能限制现有解决方案的实际应用。在本文件中,我们提出了一个设计卡路里线性MPIR计划的方法。这类计划在实际系统中易于实施,因为它们并不要求将信息分解成较小规模的子信息,也不对信息的最低要求规模施加任何限制。以$=D+1为主,我们发现当美元差异时,我们的计划将美元用于现有解决方案的实际应用会限制现有解决方案。在本文中,我们提出了设计卡路里线性MPIR计划的方法。在实际系统中很容易实施,因为不需要将信息分解成小范围,而不会对信息要求最小的尺寸施加任何限制。我们所知道的分包规模。我们所知道的分级计划,当成本时,当我们计划达到一个可实现最高水平时,当我们所知道的分级计划需要一个可实现的分级能力时,那么一个可实现一个可实现一个可实现的分级方案。