Meme is an interesting word. Internet memes offer unique insights into the changes in our perception of the world, the media and our own lives. If you surf the Internet for long enough, you will see it somewhere on the Internet. With the rise of social media platforms and convenient image dissemination, Image Meme has gained fame. Image memes have become a kind of pop culture and they play an important role in communication over social media, blogs, and open messages. With the development of artificial intelligence and the widespread use of deep learning, Natural Language Processing (NLP) and Computer Vision (CV) can also be used to solve more problems in life, including meme generation. An Internet meme commonly takes the form of an image and is created by combining a meme template (image) and a caption (natural language sentence). In our project, we propose an end-to-end encoder-decoder architecture meme generator. For a given input sentence, we use the Meme template selection model to determine the emotion it expresses and select the image template. Then generate captions and memes through to the meme caption generator. Code and models are available at github
翻译:图像Meme是一个有趣的单词。 互联网Memes 为我们对世界、 媒体和我们自身生活的看法的变化提供了独特的洞察力。 如果您在互联网上浏览时间足够长, 你就会在互联网上看到它。 随着社交媒体平台的兴起和方便的图像传播, 图像Meme已经获得名声。 图像Memes 已经成为一种流行文化, 它们在社交媒体、 博客和开放信息中的交流中起着重要作用。 随着人工智能的开发, 以及广泛使用深层次学习, 自然语言处理( NLP) 和计算机视觉( CV) 也可以用来解决生活中的更多问题, 包括Meme一代。 互联网Meme meme 通常以图像的形式出现, 并且通过组合Mememe模板( image) 和 标题( 自然语言句子) 来创建。 在我们的项目中, 我们提出一个终端到终端的编码- 解码器- 架构Meme 生成器。 对于一个输入句, 我们使用Mememe 模板选择模型选择模型模式来决定它表达的情感, 并选择图像模板。 然后产生字幕生成器和模式。 代码和模型。