Health economic evaluations often require predictions of survival rates beyond the follow-up period. Parametric survival models can be more convenient for economic modelling than the Cox model. The generalized gamma (GG) and generalized F (GF) distributions are extensive families that contain almost all commonly used distributions with various hazard shapes and arbitrary complexity. In this study, we present a new SAS macro for implementing a wide variety of flexible parametric models including the GG and GF distributions and their special cases, as well as the Gompertz distribution. Proper custom distributions are also supported. Different from existing SAS procedures, this macro not only supports regression on the location parameter but also on ancillary parameters, which greatly increases model flexibility. In addition, the SAS macro supports weighted regression, stratified regression and robust inference. This study demonstrates with several examples how the SAS macro can be used for flexible survival modeling and extrapolation.


翻译:参数生存模型比考克斯模型更便于经济建模。通用伽马(GG)和通用F(GF)分布范围很广,包含几乎所有常用分布分布,具有各种危险形状和任意复杂性。在本研究中,我们提出了一个新的SAS宏观,用于实施各种灵活的参数模型,包括GG和GF分布及其特殊案例,以及Gompertz分布。还支持适当的海关分布。与现行SAS程序不同,这一宏观不仅支持位置参数的回归,而且支持辅助参数的回归,这大大增加了模型的灵活性。此外,SAS宏观支持加权回归、分层回归和有力的推论。本研究用几个例子说明SAS宏观如何用于灵活的生存模型和外推法。

0
下载
关闭预览

相关内容

静态分析越来越被认为是程序验证、错误检测、编译器优化、程序理解和软件维护的基本工具。国际静态分析系列研讨会(SAS)是展示该领域理论、实践和应用进展的主要场所。官网链接:http://www.staticanalysis.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
159+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员