Tang and Ding \cite{X. Tang} present a series of quaternary sequences $w(a, b)$ interleaved by two binary sequences $a$ and $b$ with ideal autocorrelation and show that such interleaved quaternary sequences have optimal autocorrelation. In this paper we consider the 4-adic complexity $FC_{w}(4)$ of such quaternary sequence $w=w(a, b)$. We present a general formula on $FC_{w}(4)$, $w=w(a, b)$. As a direct consequence, we obtain a general lower bound $FC_{w}(4)\geq\log_{4}(4^{n}-1)$ where $2n$ is the period of the sequence $w$. By taking $a$ and $b$ to be several types of known binary sequences with ideal autocorrelation ($m$-sequences, twin-prime, Legendre, Hall sequences and their complement, shift or sample sequences), we compute the exact values of $FC_{w}(4)$, $w=w(a, b)$ and show that in most cases $FC_{w}(4)$ reaches or nearly reaches the maximum value $\log_{4}(4^{2n}-1)$. Our results show that the 4-adic complexity of the quaternary sequences defined in \cite{X. Tang} are large enough to resist the attack of the rational approximation algorithm.


翻译:唐氏和Ding & Cite{X. 唐} 提供了一系列四进制序列 $w(a, b) 美元, 美元=w(a) 美元, b) 美元。 作为直接后果, 我们得到了一个普通的低两进制序列 $FC{w} 美元, 美元与美元, 美元是理想的四进制序列 $FC{w} (4) 美元, 美元是理想的四进制序列 $-a =w(a, b) 美元。 我们得到了一个普通的低两进制序列, 美元与理想的二进制序列 $(a) 美元, 美元, 美元 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
29+阅读 · 2020年4月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
ACM UMAP 2018:用户建模与个性化国际会议征搞
LibRec智能推荐
4+阅读 · 2017年10月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月20日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月18日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
ACM UMAP 2018:用户建模与个性化国际会议征搞
LibRec智能推荐
4+阅读 · 2017年10月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员