Although we have seen a proliferation of algorithms for recommending visualizations, these algorithms are rarely compared with one another, making it difficult to ascertain which algorithm is best for a given visual analysis scenario. Though several formal frameworks have been proposed in response, we believe this issue persists because visualization recommendation algorithms are inadequately specified from an evaluation perspective. In this paper, we propose an evaluation-focused framework to contextualize and compare a broad range of visualization recommendation algorithms. We present the structure of our framework, where algorithms are specified using three components: (1) a graph representing the full space of possible visualization designs, (2) the method used to traverse the graph for potential candidates for recommendation, and (3) an oracle used to rank candidate designs. To demonstrate how our framework guides the formal comparison of algorithmic performance, we not only theoretically compare five existing representative recommendation algorithms, but also empirically compare four new algorithms generated based on our findings from the theoretical comparison. Our results show that these algorithms behave similarly in terms of user performance, highlighting the need for more rigorous formal comparisons of recommendation algorithms to further clarify their benefits in various analysis scenarios.
翻译:虽然我们看到建议可视化的算法激增,但这些算法却很少相互比较,因此难以确定哪种算法对特定直观分析情景来说是最佳的。虽然提出了若干正式框架,但我们认为这一问题仍然存在,因为从评价角度来看,可视化建议算法没有很好地说明。在本文中,我们提议了一个以评价为重点的框架,以根据背景来比较和比较广泛的可视化建议算法。我们介绍了我们的框架结构,其中对算法作了三个组成部分:(1)一个图表,说明可能的可视化设计的全部空间,(2)用来绕过潜在候选人的图表的方法,(3)用来对候选人的设计进行排名的甲骨文。为了展示我们的框架如何指导对可视化工作进行正式比较,我们不仅从理论上比较了现有的五种有代表性的建议算法,而且还根据我们从理论比较中得出的四种新算法。我们的结果表明,这些算法在用户业绩方面表现相似,突出表明有必要更严格地正式比较建议算法,以进一步澄清其在各个分析情景中的好处。