Thanks to their scalability, two-stage recommenders are used by many of today's largest online platforms, including YouTube, LinkedIn, and Pinterest. These systems produce recommendations in two steps: (i) multiple nominators, tuned for low prediction latency, preselect a small subset of candidates from the whole item pool; (ii) a slower but more accurate ranker further narrows down the nominated items, and serves to the user. Despite their popularity, the literature on two-stage recommenders is relatively scarce, and the algorithms are often treated as mere sums of their parts. Such treatment presupposes that the two-stage performance is explained by the behavior of the individual components in isolation. This is not the case: using synthetic and real-world data, we demonstrate that interactions between the ranker and the nominators substantially affect the overall performance. Motivated by these findings, we derive a generalization lower bound which shows that independent nominator training can lead to performance on par with uniformly random recommendations. We find that careful design of item pools, each assigned to a different nominator, alleviates these issues. As manual search for a good pool allocation is difficult, we propose to learn one instead using a Mixture-of-Experts based approach. This significantly improves both precision and recall at K.


翻译:由于可扩缩性,许多当今最大的在线平台,包括YouTube、LinkedIn和Pinterest等,都使用两阶段建议。这些系统分两步提出建议:(一) 多个点名员,按低预测潜值调整,预选整个项目池的一小部分候选人;(二) 更慢、更准确的排名员进一步缩小提名项目的范围,为用户服务。尽管受到欢迎,但关于两阶段建议者的文献相对较少,而且算法往往只是其部分的总和。这种处理的前提条件是,两阶段的业绩是由个别组成部分孤立地的行为来解释的。情况并非如此:使用合成数据和真实世界数据,我们证明排名员和点名员之间的相互作用严重影响了总体业绩。受这些调查结果的驱动,我们得出了一个较低的概括性约束,表明独立点名培训能够以一致的随机建议为目的进行业绩。我们发现,每个指定给不同点名员的物品库的精心设计,可以缓解这些问题。这不是个问题:使用合成数据和真实世界数据,我们用手动的方法来改进一个精准的拼凑方法。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
171+阅读 · 2020年6月4日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
8+阅读 · 2018年2月23日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
相关论文
Arxiv
92+阅读 · 2020年2月28日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
8+阅读 · 2018年2月23日
Arxiv
9+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员