Real-time physiological data collection and analysis play a central role in modern well-being applications. Personalized classifiers and detectors have been shown to outperform general classifiers in many contexts. However, building effective personalized classifiers in everyday settings - as opposed to controlled settings - necessitates the online collection of a labeled dataset by interacting with the user. This need leads to several challenges, ranging from building an effective system for the collection of the signals and labels, to developing strategies to interact with the user and building a dataset that represents the many user contexts that occur in daily life. Based on a stress detection use case, this paper (1) builds a system for the real-time collection and analysis of photoplethysmogram, acceleration, gyroscope, and gravity data from a wearable sensor, as well as self-reported stress labels based on Ecological Momentary Assessment (EMA), and (2) collects and analyzes a dataset to extract statistics of users' response to queries and the quality of the collected signals as a function of the context, here defined as the user's activity and the time of the day.


翻译:实时生理数据收集和分析在现代福祉应用中发挥着核心作用; 个人化分类器和探测器在许多情况中表现优于一般分类器; 然而,在日常环境中(而不是受控制的环境)建立有效的个性化分类器,需要通过与用户互动,在线收集标签数据集; 这需要带来若干挑战,从建立一个有效的信号和标签收集系统,到制定与用户互动的战略,到建立一个代表日常生活中许多用户背景的数据集; 根据压力探测使用案例,本文件(1) 建立一个系统,实时收集和分析来自耗损传感器的光谱图、加速、陀螺仪和重力数据,以及基于生态感应评估的自我报告的压力标签;以及 (2) 收集和分析数据集,以提取用户对查询的响应和所收集信号的质量的统计数据,作为背景的函数,此处定义为用户的活动和白天的时间。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
88+阅读 · 2021年6月29日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员