This project addresses a critical pedagogical need: offering students continuous, on-demand academic assistance beyond conventional reception hours. I present a domain-specific Retrieval-Augmented Generation (RAG) system powered by a quantized Mistral-7B Instruct model and deployed as a Telegram bot. The assistant enhances learning by delivering real-time, personalized responses aligned with the "Introduction to Parallel Processing" course materials. GPU acceleration significantly improves inference latency, enabling practical deployment on consumer hardware. This approach demonstrates how consumer GPUs can enable affordable, private, and effective AI tutoring for HPC education.


翻译:本项目针对一项关键的教学需求:在常规答疑时间之外,为学生提供持续、按需的学术支持。我们提出了一种领域特定的检索增强生成系统,该系统由量化版Mistral-7B Instruct模型驱动,并以Telegram机器人形式部署。该助手通过提供与“并行处理导论”课程材料实时同步的个性化响应,有效促进学习过程。GPU加速显著降低了推理延迟,使得在消费级硬件上实现实际部署成为可能。本方法展示了消费级GPU如何为高性能计算教育提供经济、私密且高效的人工智能辅导。

0
下载
关闭预览

相关内容

图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
预知未来——Gluon 时间序列工具包(GluonTS)
ApacheMXNet
24+阅读 · 2019年6月25日
大数据分析研究组开源Easy Machine Learning系统
中国科学院网络数据重点实验室
17+阅读 · 2017年6月13日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员