We introduce KAN-GCN, a fast and accurate emulator for ice sheet modeling that places a Kolmogorov-Arnold Network (KAN) as a feature-wise calibrator before graph convolution networks (GCNs). The KAN front end applies learnable one-dimensional warps and a linear mixing step, improving feature conditioning and nonlinear encoding without increasing message-passing depth. We employ this architecture to improve the performance of emulators for numerical ice sheet models. Our emulator is trained and tested using 36 melting-rate simulations with 3 mesh-size settings for Pine Island Glacier, Antarctica. Across 2- to 5-layer architectures, KAN-GCN matches or exceeds the accuracy of pure GCN and MLP-GCN baselines. Despite a small parameter overhead, KAN-GCN improves inference throughput on coarser meshes by replacing one edge-wise message-passing layer with a node-wise transform; only the finest mesh shows a modest cost. Overall, KAN-first designs offer a favorable accuracy vs. efficiency trade-off for large transient scenario sweeps.
翻译:我们提出KAN-GCN,一种用于冰盖建模的快速且精确的模拟器,其将Kolmogorov-Arnold网络(KAN)作为图卷积网络(GCNs)之前的特征级校准器。KAN前端应用可学习的一维扭曲和线性混合步骤,在不增加消息传递深度的前提下改善了特征条件化和非线性编码能力。我们采用该架构以提升数值冰盖模型模拟器的性能。我们的模拟器使用针对南极洲松岛冰川的36个融化率模拟(包含3种网格尺寸设置)进行训练和测试。在2至5层架构中,KAN-GCN达到或超越了纯GCN及MLP-GCN基准模型的精度。尽管存在微小的参数量开销,KAN-GCN通过将一层边级消息传递层替换为节点级变换,在较粗网格上提高了推理吞吐量;仅在最细网格上显示出适度的成本增加。总体而言,KAN优先的设计为大规模瞬态情景扫描提供了更优的精度与效率权衡。