Online federated learning (OFL) is a promising framework to collaboratively learn a sequence of non-linear functions (or models) from distributed streaming data incoming to multiple clients while keeping the privacy of their local data. In this framework, we first construct a vanilla method (named OFedAvg) by incorporating online gradient descent (OGD) into the de facto aggregation method (named FedAvg). Despite its optimal asymptotic performance, OFedAvg suffers from heavy communication overhead and long learning delay. To tackle these shortcomings, we propose a communication-efficient OFL algorithm (named OFedQIT) by means of a stochastic quantization and an intermittent transmission. Our major contribution is to theoretically prove that OFedQIT over $T$ time slots can achieve an optimal sublinear regret bound $\mathcal{O}(\sqrt{T})$ for any real data (including non-IID data) while significantly reducing the communication overhead. Furthermore, this optimality is still guaranteed even when a small fraction of clients (having faster processing time and high-quality communication channel) in a network are participated at once. Our analysis reveals that OFedQIT successfully addresses the drawbacks of OFedAvg while maintaining superior learning accuracy. Experiments with real datasets demonstrate the effectiveness of our algorithm on various online classification and regression tasks.
翻译:在线联结学习(OFL)是一个很有希望的框架,可以合作学习从分布式流数据向多个客户提供的非线性功能序列(或模式),同时保留其本地数据的隐私。在这个框架内,我们首先通过将在线梯度下移(OGD)纳入事实上的汇总方法(FedAvg)来构建一种香草方法(OGD),将在线梯度下移(OGD)纳入事实上的汇总方法(FedAvg)中。尽管该方法的无光度性表现最佳,但OfedAvg的通信管理间接费用和学习时间拖长。为了解决这些缺陷,我们建议通过随机量化和间歇传输的方式,建立一个通信效率高的OFL算法(名为OFDQIT ) 。我们的主要贡献是理论上证明,将超过美元时间段的QIT(OG) 实现最佳亚线性遗憾绑定($macaladlo) {O} 任何真实数据(包括非二维数据),同时大幅降低通信间接费用。此外,即使少数客户(加快处理时间和高质量的通信路径) 也保证这种最佳最佳性计算,同时在网络上也成功展示了我们的高级分析。