Serverless computing automates fine-grained resource scaling and simplifies the development and deployment of online services with stateless functions. However, it is still non-trivial for users to allocate appropriate resources due to various function types, dependencies, and input sizes. Misconfiguration of resource allocations leaves functions either under-provisioned or over-provisioned and leads to continuous low resource utilization. This paper presents Freyr, a new resource manager (RM) for serverless platforms that maximizes resource efficiency by dynamically harvesting idle resources from over-provisioned functions to under-provisioned functions. Freyr monitors each function's resource utilization in real-time, detects over-provisioning and under-provisioning, and learns to harvest idle resources safely and accelerates functions efficiently by applying deep reinforcement learning algorithms along with a safeguard mechanism. We have implemented and deployed a Freyr prototype in a 13-node Apache OpenWhisk cluster. Experimental results show that 38.8% of function invocations have idle resources harvested by Freyr, and 39.2% of invocations are accelerated by the harvested resources. Freyr reduces the 99th-percentile function response latency by 32.1% compared to the baseline RMs.
翻译:没有服务器的计算自动自动将无服务器的计算机自动连接成精细的资源缩放,并简化了具有无国籍功能的在线服务的开发和部署。然而,用户仍然无法根据各种功能类型、依赖性和投入大小来分配适当的资源。资源分配的错误配置使功能要么供应不足,要么提供过多,要么提供过多,导致资源利用率持续偏低。本文介绍Freer(Freyr),这是一个新的没有服务器的平台资源管理员(RM),该平台通过动态地从过度提供的功能中提取闲置资源,实现资源效率最大化。Freerr监测每个功能实时利用资源的情况,发现过度提供和供应不足的情况,并学习通过采用深度强化学习算法和保障机制来安全获取闲置资源,并高效加快功能。我们已经在13°的Apache OpenWhisk集群中实施并安装了Frerer(Freerr)原型。实验结果表明,38.8%的功能的闲置资源是由Freyr获取的,而39.2%的升调率则由收获的资源加速进行。 Rreyrr 将99-MER 的基线功能降低基线。