Detection of radar signals without assistance from the radar transmitter is a crucial requirement for emerging and future shared-spectrum wireless networks like Citizens Broadband Radio Service (CBRS). In this paper, we propose a supervised deep learning-based spectrum sensing approach called RadYOLOLet that can detect low-power radar signals in the presence of interference and estimate the radar signal parameters. The core of RadYOLOLet is two different convolutional neural networks (CNN), RadYOLO and Wavelet-CNN, that are trained independently. RadYOLO operates on spectrograms and provides most of the capabilities of RadYOLOLet. However, it suffers from low radar detection accuracy in the low signal-to-noise ratio (SNR) regime. We develop Wavelet-CNN specifically to deal with this limitation of RadYOLO. Wavelet-CNN operates on continuous Wavelet transform of the captured signals, and we use it only when RadYOLO fails to detect any radar signal. We thoroughly evaluate RadYOLOLet using different experiments corresponding to different types of interference signals. Based on our evaluations, we find that RadYOLOLet can achieve 100% radar detection accuracy for our considered radar types up to 16 dB SNR, which cannot be guaranteed by other comparable methods. RadYOLOLet can also function accurately under interference up to 16 dB SINR.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月2日
Arxiv
10+阅读 · 2022年3月30日
Arxiv
49+阅读 · 2020年12月16日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员